Design of prisoner’s dilemma-based fuzzy C-means computed torque controller for PUMA-560 robot manipulator
نویسندگان
چکیده
Robots are highly nonlinear and chaotic in position control. The present paper mainly presents the position control of PUMA-560 Robot manipulator. Computed torque controller (CTC) is one of the solutions for position control of robot manipulators. The main drawback of controller is that it fails to operate under different dynamic operating conditions. To overcome this difficulty, intelligent controllers have gained importance. In this paper a novel approach, design of prisoner’s dilemma-based fuzzy C-means controller to control the position of robot manipulator is presented. This controller is employed at the inputs of computed torques for obtaining the desired position. Fuzzy C-means controller with computed torques is realised by validating the clusters to choose most contributed rules. Thus the unfired rules are eliminated from the actual rule-base. Hence, a compact fuzzy controller with minimum rule-base, fuzzy C-means computed torque controller (FCMCTC), is designed. The concept of prisoner’s dilemma is introduced in this paper to improve the fuzzy strategy. The interrelations between inputs and outputs of a fuzzy linguistic model are assigned using payoff matrix through prisoner’s dilemma. Simulation results prove the efficacy of proposed controller when compared to proportional derivative computed torque controller (PD-CTC), normal FLC and that of the reference signal.
منابع مشابه
D Esign of L Yapunov Based F Uzzy Logic C Ontroller for Puma - 560 Robot Manipulator
As the robot manipulators are highly nonlinear, time varying and Multiple Input Multiple Output (MIMO) systems, one of the most important challenges in the field of robotics is robot manipulators control with acceptable performance. In this research paper, a simple and computationally efficient Fuzzy Logic Controller is designed based on the Fuzzy Lyapunov Synthesis (FLS) for the position contr...
متن کاملPredictive Computed-torque Control of a Puma 560 Manipulator Robot
Abstract: This paper describes the integration of constrained predictive control and computed-torque control, and its application on a six degree-of-freedom PUMA 560 manipulator arm. The real-time implementation was based on SIMULINK, with the predictive controller and the computed-torque control law implemented in the C programming language. The constrained predictive controller solved a quadr...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملUncertain Robotic Manipulator System’s Tracking Control Based on Fuzzy Adaptive Method
The paper puts forward a control scheme by a computed torque controller plus a fuzzy compensator concerning the issue of tracking control of uncertain robotic manipulator. Computed torque controller is used for the nominal system and the fuzzy compensator is used to control the uncertain system. The parameters of fuzzy compensator are adaptively adjusted based on Lynapunov stability theory. The...
متن کامل